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Abstract
Iron is an essential trace metal in the human diet due 
to its obligate role in a number of metabolic processes. 
In the diet, iron is present in a number of different 
forms, generally described as haem (from haemoglobin 
and myoglobin in animal tissue) and non-haem iron 
(including ferric oxides and salts, ferritin and lactoferrin). 
This review describes the molecular mechanisms that 
co-ordinate the absorption of iron from the diet and its 
release into the circulation. While many components 
of the iron transport pathway have been elucidated, a 
number of key issues still remain to be resolved. Future 
work in this area will provide a clearer picture regarding 
the transcellular fl ux of iron and its regulation by dietary 
and humoral factors.
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INTRODUCTION
Iron is an essential trace metal for all organisms. In 
humans it plays numerous biochemical roles, including 
oxygen binding in haemoglobin and as an important 
catalytic centre in many enzymes, for example the 

cytochromes. In normal healthy adults, some 0.5-2 mg of  
iron is lost each day due to blood loss and the constant 
exfoliation of  iron-containing epithelial cells that line 
the gastrointestinal and urinary tracts, skin and hair. 
Therefore, the same amount of  iron from dietary sources 
is required each day to replace the lost iron and maintain 
body iron homeostasis. Even though iron is an essential 
metal in human metabolism, it is highly toxic to cells and 
tissues if  present in elevated levels. Perversely, humans do 
not possess the necessary machinery to rid the body of  
excess iron and, therefore, the absorptive process must 
be tightly regulated within defi ned physiological limits to 
avoid pathologies associated with both iron deficiency 
and overload.

Dietary iron is found in two basic forms, either as 
haem-found in meat and meat products-or non-haem 
iron-present in cereals, vegetables, pulses, beans, fruits 
etc in a number of  forms ranging from simple iron 
oxides and salts to more complex organic chelates. Non-
haem iron predominates in all diets comprising some 
90%-95% of  total daily iron intake. The absorption 
of  both haem and non-haem iron takes place almost 
exclusively in the duodenum and the bioavailability of  
iron from these sources is infl uenced by a number of  
variables, e.g. the iron content of  foods, the type of  
iron present, i.e. haem or non-haem, and other dietary 
constituents. Importantly, absorption is also regulated 
in line with metabolic demands that refl ect the amount 
of  iron stored in the body, and the requirements for red 
blood cell production. These humoral mechanisms are 
further reviewed in this volume[1].

Despite accounting for only 5%-10% of  dietary 
iron in western countries, haem is the most bioavailable 
source of  iron amounting to is some 20%-30%[2]. In 
contrast, the bioavailability of  non-haem iron is low-
only 1%-10% of  the dietary load is absorbed-and is 
profoundly infl uenced by other dietary components that 
can enhance or inhibit non-haem iron bioavailability. 
The most potent enhancer is ascorbic acid (vitamin C), 
which acts by reducing ferric iron to the more soluble 
and absorbable ferrous form. Phytates found in cereal 
products and polyphenolic compounds found in all plant 
products are the most potent dietary inhibitors of  non-
haem iron absorption. However, it is important to note 
that on an equimolar basis the pro-absorptive action of  
dietary ascorbic acid can counteract the inhibitory effect 
of  phytates and polyphenols[3].
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MECHANISMS INVOLVED IN INTESTINAL 

IRON TRANSPORT
In recent years our understanding of  the mechanisms 
involved in dietary iron absorption by duodenal enterocytes 
has increased dramatically. Both haem and non-haem iron 
are taken up in this proximal region of  the small intestine, 
though their transport across the apical membrane of  the 
enterocytes occurs through totally independent pathways 
(Figure 1).

Ferrous iron
The majority of  dietary non-haem iron enters the 
gastrointestinal tract in the ferric form. However, Fe3+ is 
thought to be essentially non-bioavailable (see below) and, 
therefore, it must fi rst be converted to ferrous iron prior 
to absorption. There are numerous dietary components 
capable of  reducing Fe3+ to Fe2+, including ascorbic acid[4], 
and amino acids such as cysteine[5] and histidine[6]. It is 
believed that the action of  these dietary reducing agents 
takes place in the acidic environment of  the gastric lumen. 
Indeed the essential requirement for an acid environment 
in iron absorption is exemplif ied by the fact that 
achlorhydria is commonly associated with iron defi ciency 
anaemia[7,8]. However, ferric iron reaching the duodenal 
enterocytes may still be reduced by the cells endogenous 
reducing activity. A number of  studies have demonstrated 
that the brush-border surface of  duodenal enterocytes and 
cultured intestinal cells possess ferric reductase enzymic 

activity[9-11]. Using a subtractive cloning strategy designed 
to identify intestinal genes involved in iron absorption, 
Dcytb (for duodenal cytochrome b), a homologue of  
cytochrome b561, was identifi ed as the enzyme responsible 
for this process[12]. Like cytochrome b561, Dcytb is a haem-
containing protein with putative binding sites for ascorbate 
and semi-dehydroascorbate. The protein is expressed on 

the brush border membrane of  duodenal enterocytes, the 
major site for the absorption of  dietary iron. Moreover, 
antibodies raised against Dcytb block the endogenous 
ferric reductase activity of  the duodenal brush border 
membrane, providing further evidence for a functional role 
in dietary iron processing[12].

Intriguingly, a recent study has reported that the 
targeted disruption of  the Cybrd1 gene in mice (which 
encodes Dcytb) does not lead to an iron deficient 
phenotype[13], implying that Dcytb is not necessary for 
intestinal iron absorption in mice. However, an important 
caveat to this study is the fact that mice are able to 
synthesize significant quantities of  ascorbic acid-unlike 
humans who are reliant on dietary vitamin C to satisfy 
their requirements-and may, therefore, have less need for a 
duodenal surface ferric reductase.

Following reduction either by Dcytb or dietary 
reducing agents, the resulting Fe2+ becomes a substrate for 
the divalent metal transporter, DMT1-also known as the 
divalent cation transporter, DCT1[14], and natural resistance 
associated macrophage protein, Nramp2[15]. The relatively 
low pH of  the proximal duodenum together with the acid 
microclimate present at the brush border membrane[16,17] 
stabilises iron in the ferrous form and provides a rich 
source of  protons that are essential for driving iron 
uptake across the apical membrane of  the intestinal 
epithelium[14,18].

The role of  this transpor ter in intest inal i ron 
homeostasis has been highlighted by a number of  
studies. Our work[18] and that of  others[19] have shown 
that antibodies to DMT1 can significantly inhibit iron 
absorption. Furthermore, targeted disruption of  DMT1 in 
mice has revealed the essential role of  this transporter in 
both intestinal iron absorption and in erythroid precursor 
development[20]. In addition to these biochemical and 
molecular manipulations, two rodent models, the mk/
mk mouse[15] and the Belgrade (b) rat[21], which posses a 
spontaneous mutation (G185R) in the DMT1 gene, exhibit 
defective intestinal iron uptake and microcytic anaemia. 
More recently a number of  mutations in human DMT1 
have also been identified[22-25] which in turn lead to the 
development of  microcytic anaemia.

The molecular identity of  the functional DMT1 
isoform in intestinal epithelial cells has been the subject 
of  recent debate. At least four isoforms exist through 
alternate splicing in exon 16[26] and the presence of  two 
transcription start sites-named exon 1A and 1B[27]. Exon 
16 splicing gives rise to two variants which differ in their 
terminal 19-25 amino acids and their 3 ′ untranslated 
sequence (UTR). Interestingly one of  these variants 
contains an iron responsive element in its 3′ UTR[26]. The 
significance of  this is discussed later in this review. All 
four isoforms can be detected at varying levels in intestinal 
epithelial cells[27], but the exon 1A/IRE-containing variant 
has been suggested to be the major functional isoform in 
absorptive enterocytes.

Ferric iron
We stated ear l ier that Fe3+ is thought to be non-
bioavailable. However, some workers have proposed that 
Fe3+ might be absorbed by intestinal enterocytes via a 
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Figure 1  The cellular mechanisms involved in intestinal iron absorption. Dietary 
non-haem iron (mostly ferric) is reduced by the actions of the ferric reductase 
Dcytb and reducing agents in the diet to yield Fe2+, which subsequently enters 
the enterocytes via DMT1. Haem is absorbed via HCP1, broken down by haem 
oxygenase 1 (HO) to liberate Fe2+ (this joins a common pool with iron from the 
non-haem pathway) and bilirubin (which might be removed from the cell by the 
efflux proteins FLVCR and ABCG2). If body iron stores are high, iron may be 
diverted into ferritin and lost when the cell is shed at the villus tip. Alternatively, iron 
passes into the labile iron pool (LIP) and is subsequently processed for effl ux via 
IREG1 (as Fe2+). The exiting iron is re-oxidised to Fe3+ through hephaestin (Hp) to 
enable loading onto transferrin (Tf).
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mechanism that is distinct from DMT1 (reviewed in[28]). In 
this model, ferric iron, which is insoluble at physiological 
pH, is released from the food matrix in the acidic 
environment of  the stomach, and is chelated by mucins 
on the duodenal brush border surface, which maintain the 
iron in the ferric state. Fe3+ enters the enterocyte across 
the apical membrane via interaction with β3-integrin and 
mobilferrin (a calreticulin homologue). In the cytosol, 
this complex combines with f lavin monooxygenase 
and β2-microglobulin to form a larger conglomerate 
(approximately 520 kDa) known as paraferritin, which has 
ferric reductase activity resulting in the conversion of  the 
absorbed Fe3+ to Fe2+. Recent evidence suggests that the 
paraferritin complex may also contain DMT1[29], which 
may permit the delivery of  ferrous iron to intracellular 
organelles.

Ferritin
In animal and plant tissues, the major iron storage protein 
is ferritin. Most nutrition texts focus only on haem and 
non-haem iron, and generally ignore the possibility 
that ferritin may be an important nutritional source of  
iron. While the issue of  ferritin bioavailability is still 
controversial, a number of  studies have shown that 
both plant and animal ferritin sources are absorbed in 
humans[30-32] with a bioavailability equivalent to that of  
ferrous sulphate. The ferritin iron uptake mechanism is yet 
to be determined. One possibility is that ferritin is broken 
down by protease activity in the upper gastrointestinal 
tract and the released iron is absorbed via the Dcytb/
DMT1 route. However, studies have shown that ferritin is 
largely resistant to high temperature, low pH and protein 
denaturing agents[33,34]. Therefore, it is possible that ferritin 
may be absorbed intact and broken down intracellularly 
(in the lysosomes) to liberate its iron load. In support of  
this latter possibility, one study has reported that iron and 
ferritin protein are both taken up by the intestinal Caco-2 
cell line[35]. Such a mechanism would require the presence 
of  a ferritin receptor on the apical membrane of  intestinal 
enterocytes. While the presence of  ferritin receptors 
has been postulated on liver[36] and placental[37] plasma 
membranes, none has yet been identified in intestinal 
tissue. Taken together this evidence suggests that the 
molecular identity of  at least one important intestinal iron 
transport gene may remain to be discovered.

Lactoferrin
In breast-fed infants, a major proportion of  iron is bound 
to the human milk protein lactoferrin, an iron-binding 
protein capable of  binding two ferric ions[38]. Specific 
receptors for lactoferrin have been identifi ed on the brush 
border surface of  foetal enterocytes[39] and subsequent 
studies have shown that these receptors mediate the 
uptake of  lactoferrin-bound iron in intestinal epithelial cell 
cultures[40]. Interestingly, a recent study looking at ontogenic 
changes in the expression of  iron transport proteins in 
mouse small intestine, has suggested that the lactoferrin 
receptor may be the principal iron transport pathway in 
early life[41]. Intriguingly, a recent human volunteer study 
has indicated that the nutritional importance of  lactoferrin 

may not be limited to infants since it is also a bioavailable 
source of  iron (with equivalent bioavailability to ferrous 
sulphate) in young adult females[42].

Haem
Non-vegetarian diets provide an additional and important 
source of  iron in the form of  haem (largely from 
haemoglobin and myoglobin). While haem comprises only 
approximately 10% of  dietary iron intake, because it is 
more bioavailable than non-haem iron, it may contribute 
as much as half  of  the total iron absorbed from western 
meat-rich diets[43]. Despite the wealth of  information 
available on the uptake of  non-haem iron, the mechanisms 
involved in haem iron absorption are only just beginning 
to emerge. Early work on intestinal absorption suggested 
that haem binds to the duodenal brush border membrane 
and is absorbed as an intact molecule[43,44]. In support of  
this proposed mechanism, workers have reported the 
existence of  haem binding proteins on pig enterocytes[45,46] 
and intestinal Caco-2 cells[47]. More recently, a number of  
candidate haem binding proteins have been identified in 
the intestinal epithelial cells including the ATP-binding 
cassette protein, ABCG2[48], the feline leukaemia virus C 
receptor protein, FLVCR[49] and the haem carrier protein, 
HCP1[50]. Of  these candidate haem transporters, ABCG2 
and FLVCR mediate haem effl ux and only HCP1 acts as 
a haem import protein. The high duodenal expression 
of  HCP1 suggests that it may be the protein involved in 
haem uptake from the diet. However, the precise role of  
HCP1 in iron metabolism remains to be fully elucidated. 
This issue has been complicated by recent data indicating 
that HCP1 may also function as a proton-coupled folate 
transporter, independent from its haem transporting 
properties[51].

Following absorption, haem is detectable in membrane-
bound vesicles within the cytoplasm[52,53]. Within these 
vesicles, it is thought that the iron contained with the 
protoporphyrin ring is excised by the action of  haem 
oxygenase 1[54] yielding ferrous iron which enters a 
common intracellular pool along with the iron absorbed 
via the non-haem transport pathways. Digestion appears 
to be complete within the enterocytes since a number of  
studies have failed to detect intact haem effl ux across the 
basolateral membrane[44,47]. One intriguing possibility is that 
the effl ux proteins ABCG2 and FLVCR, also expressed in 
the duodenum, may act to remove bilirubin formed as a 
by-product of  haem degradation from the enterocytes.

Intracellular storage and translocation of iron
At this stage, the absorbed iron has two fates depending 
on the body’s requirements. If  the body stores are replete, 
and there is no increased erythropoietic drive, a signifi cant 
amount of  newly absorbed iron will be stored in the 
enterocytes as ferritin. Because duodenal enterocytes 
turnover very rapidly (their lifespan is approximately 3-4 d) 
and the majority of  enterocytes contributing to absorption 
lie in the mid/upper villus region, this intracellular ferritin 
iron is quickly lost into the intestinal lumen as the ageing 
cells are sloughed off  at the villus tip. Interestingly, in 
human subjects there is a positive correlation between 
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dietary iron bioavailability and faecal ferritin content which 
supports the above mechanism[55,56]. Indeed it is likely that 
this is a very important mechanism for controlling the 
release of  iron into the circulation.

The mechanism by which iron is translocated from 
the apical pole of  the enterocytes so that it becomes 
available for export across the basolateral membrane is 
poorly understood. A body of  evidence has emerged 
from studies in Caco-2 cells for a vesicular transport 
pathway that co-ordinates the transcellular movement of  
iron. Central to this mechanism is apo-transferrin (apo-
Tf) which when added at the basolateral surface of  the 
Caco-2 cell monolayer stimulates transepithelial iron fl ux 
in a dose-dependent manner[57-59]. Interestingly, in Caco-2 
cells apo-Tf  and Fe-Tf, once taken up from the basolateral 
medium, appear to be directed into distinct endosomal 
vesicular fractions[59,60]. The apo-Tf  containing endosomes 
are routed towards the apical pole of  the cell where 
they co-localise with vesicles containing DMT1[61]. It is 
proposed that the iron entering the cell along with DMT1 
is transferred to apo-Tf  within these endocytic vesicles, 
and is subsequently exocytosed into the basolateral 
medium as Fe-Tf. Using a combination of  biochemical 
inhibitors to disrupt this vesicular network, it is estimated 
that this pathway may count for as much as 50% of  the 
transepithelial iron fl ux in Caco-2 cells[62,63]. 

While on the face of  it, the above studies provide 
compelling evidence for a co-ordinated mechanism for 
the transcellular routing of  iron, a number of  caveats 
must be taken into consideration. (1) This model requires 
the expression of  both DMT1 on the apical surface and 
transferrin receptors (TfR) on the basolateral membrane 
of  the same enterocytes. While this requirement holds for 
Caco-2 cells[64], the evidence from rat and mouse intestine 
suggests that TfR are predominantly expressed in the 
proliferating crypt and lower villus enterocytes[65-69] while 
dietary iron uptake through apical membrane DMT1 
occurs in the upper villus enterocytes[70-73]. (2) Recent 
studies have shown that intestinal-specific inactivation 
of  IREG1 (the basolateral iron transporter) results in 
anaemia confi rming the essential role of  this pathway in 
iron homeostasis[74]. (3) Caco-2 cells, while an excellent 
model of  the intestinal epithelium, exhibit some non-
enterocyte properties including the ability to synthesize 
and secrete transferrin[75-76]. Taken together, all of  these 
studies highlight the need for further investigation into the 
transcellular iron transport mechanisms and their role in 
maintaining body iron homeostasis.

Iron export
Effl ux of  iron across the basolateral surface of  enterocytes 
is achieved through the co-ordinated action of  a transport 
protein IREG1[77]-also known as ferroportin[78] and 
MTP1[79]-and a ferrioxidase, hephaestin[80]. Studies in which 
IREG1 was expressed in Xenopus laevis oocytes indicate 
that this is a unidirectional effl ux transporter of  ferrous 
iron[77,78]. Interestingly, this effl ux function is up-regulated 
in the presence of  ceruloplasmin, a copper binding 
ferrioxidase, plus transferrin to bind the newly liberated 
iron[77]. This suggests that while ferrous iron is released 
through IREG1 it must be oxidised to ferric iron to 

facilitate its loading onto transferrin for onward transport 
in the circulation. Interestingly studies with the yeast 
ceruloplasmin homologue, Fet3p, have highlighted the 
requirement for ferrioxidase activity in iron accumulation 
by transferrin[81,82].

As stated above, the use of  knockout mice has 
elegantly demonstrated the essential role of  IREG1 in 
basolateral iron efflux[74]. In addition, a second genetic 
mutant mouse model-the sex-linked anaemia (sla) mouse-
has highlighted the critical requirement for oxidation of  
iron leaving the enterocytes for normal iron homeostasis. 
The sla mouse develops a moderate to severe microcytic 
hypochromic anaemia[83]. It has been shown subsequently 
that these mice exhibit normal uptake of  iron into 
enterocytes[84], but the subsequent release of  iron into the 
circulation is diminished[85]. As a result, iron accumulates 
in enterocytes, and is lost when these cells are sloughed 
at the villus tip[86]. While the in vitro studies described 
earlier[77] used the ferrioxidase activity of  ceruloplasmin to 
drive iron effl ux, in the intestine the oxidation of  iron is 
achieved by a ceruloplasmin homologue, hephaestin, which 
is also a multicopper ferrioxidase[87]. In the sla mouse, 
the hephaestin gene is defective leading to a truncated 
form of  the protein[80], which is mislocalised within the 
enterocytes[88] and has reduced ferrioxidase activity[87].

REGULATION OF INTESTINAL IRON

TRANSPORT
The regulation of  intestinal iron absorption is complex 
and relies on mechanisms which sense dietary iron content 
as well as iron storage levels in the body and erythropoietic 
iron requirements (Figure 2). The iron regulatory hormone 
hepcidin is likely to be an important intermediate in 
signalling the storage and erythroid requirements and 
this aspect of  iron homeostasis will be dealt with in an 
accompanying review[1].

Basal transporter expression
In the healthy physiological state intestinal transporter 
expression will refl ect body iron status exemplifi ed by the 
circulating levels of  iron bound to transferrin. Cells in the 
duodenal crypts of  Lieberkühn express both Hfe[89,90], the 
protein mutated in more than 80% of  haemochromatosis 
patients[91], and TfR on their basolateral surface. It is 
believed that Hfe binds to TfR regulating the rate at 
which transferrin-bound iron can enter the cell[92,93]. One 
suggestion is that the cellular iron concentration established 
as a result of  this interaction ultimately determines the 
basal level of  expression of  the proteins involved in iron 
absorption in the mature absorptive cells in the upper 
third of  the villus. Importantly, in a modifi cation to this 
hypothesis, we propose that in response to humoral 
signals, such as hepcidin, iron transport[94] and transporter 
expression[95] in mature epithelial cells, can be modified 
rapidly without the need to re-programme the crypt cell 
sensing mechanism.

The role of dietary iron
Rapid regulation of  intestinal transporter expression in 
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response to dietary factors is probably sensed by the villus 
enterocytes. More than half  a century ago the “mucosal 
block” hypothesis was formulated following studies which 
demonstrated that a large oral dose of  iron could reduce 
the absorption of  a smaller dose administered several 
hours later[96,97]. It was argued that due to the short time 
interval between doses, the initial dose must be having 
a direct effect on the mature enterocytes rather than the 
crypt cells. Whether such a phenomenon occurs with 
meaningful dietary iron levels is not clear but this may be 
a considerable problem with supplemental iron levels[98]. 
Using the Caco-2 cell model, we have addressed the issue 
of  whether non-haem iron can regulate iron transporter 
expression within a timescale and at concentrations 
that are consistent with digestion and absorption of  
a meal. We found that DMT1 (the IRE-containing 
isoforms) protein expression on the apical surface of  
these cells is decreased by iron concentrations as low 
as 20 μmol/L[64]. The decrease in DMT1 transporter 
expression was rapid, occurring within 1-4 h following 
the exposure to iron[99]. Further analysis revealed that 
DMT1 protein was internalised and targeted towards a 
late endosomal/lysosomal compartment. Interestingly, 
these iron-dependent effects were restricted to the apical 
uptake pathway-IREG1 protein expression was unaltered- 
and were fully reversible (DMT1 protein levels returned 
to their original basal levels within 4-8 h) following the 
removal of  iron[99]. Our findings in this pertinent cell 

culture model are consistent with those observed in rats 
following oral gavage with an iron bolus[100-102] suggesting 
that the redistribution of  DMT1 between different cellular 
compartments may be important physiologically for 
optimising iron absorption from a meal so that it matches 
better the body’s metabolic requirements.

Iron regulatory proteins and iron responsive elements
In addition to trafficking of  iron transport proteins, 
a number of  intestinal iron metabolism genes can be 
regulated post-transcriptionally through interactions 
between cytosolic iron regulatory proteins (IRP) which 
bind to iron responsive elements (IRE), stem loop 
structures in either the 3′ or 5′ untranslated region (UTR) 
of  several mRNA species, under conditions of  cellular 
iron deficiency. TfR mRNA contains five IREs in its 3′
UTR, and is stabilised following IRP binding as this blocks 
a target site for endonuclease activity[103-106]. Interestingly, 
two isoforms of  DMT1 contain a single IRE in the 3′UTR[26]. 
While the DMT1 IRE can bind IRP in vitro [107,108], its 
role in regulating DMT1 expression remains to be fully 
determined.

In contrast to the reported role of  the 3′IRE sequences 
in conferring mRNA stability, the expression of  mRNAs 
possessing 5′IREs, such as ferritin, are poorly translated 
with cellular iron low. But, expression is increased by high 
iron levels in duodenal enterocytes[109]. This is because 
IRP/IRE binding blocks the association of  the eukaryotic 
initiation factor complex to the 43S ribosomal unit[110]. 
Interestingly, IREG1 mRNA contains a single IRE in the 
5′UTR[77,79]. However, the role of  IRP/IRE interactions 
in the regulation of  IREG1 transporter expression is 
even more controversial than its role in regulating DMT1 
expression. Evidence suggests that the response to changes 
in iron status is tissue-specific-IREG1 expression in the 
liver[79] and lung[111] and in macrophages[112] is up-regulated 
by high iron whereas in the intestine expression is elevated 
by iron defi ciency[77]. This may indicate that transcriptional, 
translational and post-translational processing of  IREG1 
varies between cell types[113]. Clearly, the mechanisms 
involved in iron-dependent regulation of  IREG1 in the 
intestine require further attention.

Local tissue factors
While the majority of  this review has focussed on the 
transport pathways in the enterocytes it is important to 
bear in mind that the intestinal cell population is a highly 
heterogeneous affair. It is likely, therefore, that cross-talk 
between the epithelial cells and other cell types, such as 
macrophages, neutrophils, intraepithelial lymphocytes etc 
will be important in the overall regulation of  intestinal 
iron transport. One intriguing hypothesis in this regard is 
the possible physiological role of  the pro-inflammatory 
cytokine TNFα in regulating intestinal iron transport. 
TNFα is not only synthesized by peripheral blood 
monocytes and macrophages in response to infl ammatory 
stimuli, but is also released by intraepithelial lymphocytes 
(IEL) that reside within the intestine in response to high 
iron intakes[114]. These findings led to the formation of  
a hypothesis (named the piggyback-sensor model[115]) 
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which suggested that interaction between Hfe in the 
developing enterocytes with specifi c epitopes on the IELs 
was essential for regulating local TNFα production. Once 
released, TNFα leads to iron deposition within intestinal 
enterocytes via a TNF receptor 2-dependent mechanism[116]. 
Further studies by our group[117] and others[118,119] have 
shown that TNFα has a direct infl uence on intestinal iron 
transporter expression and iron transport. These studies 
have opened the way for further investigations into the 
role of  cell to cell cross-talk and the role of  local tissue 
factors in regulating intestinal iron transport.

SUMMARY AND FUTURE DIRECTIONS
Clearly, our understanding of  the molecular components 
of  the intestinal iron transport pathway has increased 
exponentially in the last decade. However, there are still a 
number of  important questions that remain unanswered: 
(1) How is iron shunted across the enterocytes from the 
apical pole to the basolateral membrane? There is some 
evidence for the presence of  a tubulovesicular pathway. 
But, this work has largely been carried out in cell lines, 
and needs to be explored further in “normal” intestinal 
tissue. A role for calreticulin, a proposed component of  
the paraferritin pathway, remains a possibility though is 
still unproven. (2) What are the relative contributions of  
ferritin (and possibly lactoferrin) to iron nutrition? Could 
these iron sources be exploited for new supplemental 
therapies to treat iron deficiency? (3) Is there a role for 
cross-talk between enterocytes and other intestinal cell 
types in the local regulation on intestinal iron transport? If  
so, what are the cellular mechanisms involved? Are local 
tissue factors (such as TNFα) relevant physiologically in 
the control of  iron absorption? (4) Hepcidin - how does 
it regulate intestinal iron transport? Is it an important 
physiological regulatory or is its main role in iron-
related pathologies such as iron deficiency anaemia, 
haemochromatosis and anaemia of  chronic disease?
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